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Abstract

Detecting significance in a high-dimensional sparse data structure has received a
large amount of attention in modern statistics. In the current paper, we introduce a
compound decision rule to simultaneously classify signals from noise. This procedure
is a Bayes rule subject to a mixture loss function. The loss function minimizes the
number of false discoveries while controlling the false non discoveries by incorporating
the signal strength information. Based on our criterion, strong signals will be penalized
more heavily for non discovery than weak signals. In constructing this classification
rule, we assume a mixture prior for the parameter which adapts to the unknown spar-
sity. This Bayes rule can be viewed as thresholding the “local fdr” (Efron 2007) by
adaptive thresholds. Both parametric and nonparametric methods will be discussed.
The nonparametric procedure adapts to the unknown data structure well and out-
performs the parametric one. Performance of the procedure is illustrated by various
simulation studies and a real data application.

Keywords: High dimensional sparse inference, Bayes classification rule, Nonparametric esti-

mation, False discoveries, False nondiscoveries
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1 Introduction

Consider a normal mean model:

Zi = βi + εi, i = 1, · · · , p (1)

where {Zi}ni=1 are independent random variables, the random errors (ε1, · · · , εp)T follow

a multivariate normal distribution Np(0, σ
2Ip), and β = (β1, · · · , βp)T is a p-dimensional

unknown vector. For simplicity, in model (1), we assume σ2 is known. Without loss of

generality, let σ2 = 1. (Our interest is in settings with large p and significant sparsity. In

such settings σ2 can be quite accurately estimated. So the assumption that σ2 is known is

not a restrictive limitation.) The central problem is to make inference about β based on the

observations {zi}ni=1. For example, much attention has focused on estimating the unknown

β. James & Stein (1961) showed that shrinkage type estimators performs better than the

conventional maximum likelihood estimator under the squared error loss function.

In modern scientific applications, β is usually a high dimensional sparse vector with a

large proportion of elements as 0. For example, in genome-wide association studies, scientists

are interested in finding out which SNPs are associated with some observable traits (e.g.

weight, blood pressure, some disease). The number of SNPs can be tens of thousands

or even millions. However, a majority of the SNPs does not have any association with

the response variable. This scientific problem can be formularized as the normal mean

model in (1). Various applications of model (1) in high dimensional setting also occur in

model selection in machine learning (George & Foster 2000), smoothing/de-noising in signal

processing (Johnstone & Silverman 2004) and significance testing in genomics (Efron &

Tibshirani 2007). The nonzero elements in β are called “signals”, and the zero ones are

called “noise”. In practice, one does not know which elements are signals. Furthermore, the

proportion of signals is also usually unknown. Currently a predominant statistical interest

involves detecting which coordinates are signals and which are noise.

In the current paper, we will introduce a compound decision rule to simultaneously detect
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signals in the high dimensional sparse setting. In the decision making process, the mistakes

can be classified as two types: false discoveries and false non discoveries. In practice, it is

usually more severe that a strong signal is undetected than an weak signal. Our decision

rule will aim to minimize the total number of false discoveries while controlling the false

non discoveries with a criterion which incorporates the signal strength information. The

classification procedure is a Bayes rule under a mixture loss function. It turns out that our

Bayes rule can be viewed as thresholding the “local fdr” (Efron 2007) by adaptive thresholds.

The mixture prior for β is further investigated both parametrically and non parametrically.

We will show that the nonparametric Bayes procedure adapts well to the unknown sparsity

and the underlying data structure.

The rest of the paper is organized as follows: In section 2, we introduce a mixture loss

function, a mixture prior for β and the Bayes classification rule. Both parametric and

nonparametric procedures will be discussed. Section 3 contains various simulation studies to

illustrate the performance of our method. In section 4, the method is applied to a publicly

available gene expression dataset.

2 Method

Classification between the signals and the noise in (1) can be modeled by the following

hypothesis testing problem:

Hi0 : βi = 0 vs Hi1 : βi 6= 0, i = 1, · · · , p.

We will introduce a compound decision rule. If we claim βi 6= 0, let ai = 1, otherwise let

ai = 0. The decision vector a = (a1, · · · , ap) describes our classification rule to distinguish

signals from noise. The oracle procedure is that ai = 1 when βi 6= 0 and ai = 0 otherwise.

In applications there may be false discoveries, that is, ai = 1 while βi = 0. In practice, we

want to control the total number of false discoveries. On the other hand, one can also make

false non-discoveries, that is, ai = 0 while βi 6= 0. Instead of directly controlling the total
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number of false non-discoveries, we formulate a loss function that only mildly penalizes false

non discoveries when the true value of βi is not far away from zero. Combining the intuition

from the above argument, we consider the following mixed loss function:

L(a,β) =

p∑
i=1

[
aiIβi=0 + (1− ai)cβ2

i

]
. (2)

The first part L1 =
∑p

i=1 aiIβi=0 is the total number of false discoveries. The second part

L2 =
∑p

i=1(1− ai)β2
i is the squared error loss if ai = 0 but βi 6= 0. The tuning parameter c

balances L1 and L2, and the effect of c will be explored through simulations studies in later

sections. To minimize loss function L(a,β), it is equivalent to minimizing the total false

discoveries L1 subject to the constraint L2 ≤ A where A is some predetermined constant.

This mixed loss function is more likely to detect the strong signals than the weak signals

since L2 will be penalized more heavily when β2
i is large. It is worth mentioning that the

loss function (2) is designed to find a classification rule a. We are not proposing to estimate

the signal strength of β by a.

In large scale multiple testing, Sun & Cai (2007) also introduced a compound decision

rule to detect signals from noise with the following loss function:

L∗(a,β) =

p∑
i=1

[
caiIβi=0 + (1− ai)Iβi 6=0

]
. (3)

The second part L∗2 =
∑p

i=1(1 − ai)Iβi 6=0 is the total number of false non-discoveries. To

minimize L∗(a,β), it is equivalent to minimize L∗2 subject to controlling false discoveries at a

particular level. This loss function treats the nonzero signals with equal weight while ignoring

the actual signal strength. The loss function (2) is different from (3) by incorporating the

signal strength information for the false non discoveries.

A related explanation for loss function (2) is based on different penalty structures for

each of the classification mistakes. The cost of saying that βi 6= 0 when it is in fact equal

to 0 is constant (and normalized to be 1). On the other hand, the cost of saying that

βi = 0 when it is nonzero is proportional to the square of its magnitude. In the genetic
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array framework, this idealized cost structure can be interpreted as putting a fixed cost

for each subsequent experiment performed to sequence genes that were called “differentially

expressed” (βi 6= 0) in the initial screening step and costs proportional to the magnitude

of the differential expression for failing to make a discovery. Scott & Berger (2006) briefly

discussed a similar loss function based on the above argument from the cost perspective.

Instead of considering the squared error loss for L2 term in (2), they assume that the cost

for a false non discovery is proportional to the absolute value of its magnitude. Comparing

with Scott & Berger (2006), our loss function magnifies the effect of false non discovery

when |βi| > 1 and shrinks the effect when |βi| < 1. Furthermore, based on loss function (2),

the threshold of the Bayes classification procedure introduced in section 2.2 is an explicit

expression involving the marginal densities g(zi).

Muller, Parmigiani & Rice (2006) also realized that false non-discoveries should not be

treated equally. However, the class of loss functions Lm that they consider while related

to our loss does not include ours as a special case. Further, they do not construct explicit

nonparametric empirical Bayes procedures as we do later in our paper.

In Benjamini & Hochberg (1997), they considered a weighted multiple testing framework,

where they maximized a weighted number of rejections with controlling a weighted number of

false rejections. More specifically, maximize E(
∑p

i=1 bi1ai) such that E(
∑p

i=1 bi2aiIβi 6=0) ≤ α,

where {bi1}pi=1 and {bi2}pi=1 are two sets of positive weights satisfying
∑p

i=1 bi1 =
∑p

i=1 bi2 = p.

This criterion assigned different weights for different hypothesis, but it did not give any

detailed suggestions on how to assign these weights. Furthermore, maximizing number of

rejections is one way to increase the power of the test, but it is still different from minimizing

the number of false non discoveries.

In the classic decision theoretic framework, a Bayes rule is to find a which minimizes the

expectation of the loss function (2) with respect to the posterior distribution of β conditional

on the observation. Before we introduce our Bayes rule a, we first propose a prior structure

for the unknown high-dimensional sparse vector β and calculate the corresponding posterior

distributions.
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2.1 Mixed Prior and Related Results

Since a large proportion of {βi} are zero, but this proportion is unknown, we will assume a

mixed prior for β:

p(βi|w, γ) = wδi + (1− w)γ(βi). (4)

In (4), w is the unknown proportion of zero elements in β, δi is the probability mass 1 at

point 0, γ(βi) is the prior density for the nonzero βi. With the mixed structure of (4), we

assume that βi = 0 with probability w and follows density γ(βi) with probability 1− w. It

is worth mentioning that we do not assume w to necessarily be very close to 1 here. Our

estimate of w in sections 2.3 and 2.4 adapts to the unknown sparsity. In this section, we will

not give any detailed expressions for γ(βi). In sections 2.3 and 2.4, for deriving the Bayes

rule a, both parametric and nonparametric methods will be considered with respect to the

mixture prior (4).

The mixture structure (4) has often been favored by statisticians to model the sparsity

in β. Johnstone & Silverman (2004) first proposed this structure and assumed parametric

priors for γ(βi), e.g. the normal prior or the Laplace prior. These will be discussed in section

2.3 of the current paper. Later, Raykar & Zhao (2010) considered an unspecified distribution

for the nonzero part of (4) and proposed a nonparametric empirical Bayes method to estimate

β. Brown & Greenshtein (2009) applied a nonparametric prior for β directly but without

the mixture structure in (4). See their papers for additional references.

The likelihood function of the observations z given β can be expressed as follows:

p(z|β) =

p∏
i=1

p(zi|βi). (5)

The posterior distribution of β given the data z, the hyper parameter w and the non zero

prior γ is given by the Bayes formula:

p(β|w, γ, z) =

∏p
i=1 p(zi|βi)p(βi|w, γ)

m(z|w, γ)
, (6)
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where

m(z|w, γ) =

p∏
i=1

∫
p(zi|βi)p(βi|w, γ)dβi =

p∏
i=1

m(zi|w, γ) (7)

is the marginal distribution of the data given the hyper parameter and γ. Let N(z|µ, σ2)

denote the normal density with indicated mean and variance. Then

m(zi|w, γ) = wN(zi|0, 1) + (1− w)g(zi), (8)

where

g(zi) =

∫
N(zi|βi, 1)γ(βi)dβi (9)

is the marginal density of zi given that βi is nonzero. The posterior in (6) can be factored

as p(β|z, w, γ) =
∏p

i=1 p(βi|zi, w, γ) with

p(βi|zi, w, γ) = piδ(βi) + (1− pi)G(βi), (10)

where

pi = p(βi = 0|zi, w, γ) =
wN(zi|0, 1)

wN(zi|0, 1) + (1− w)g(zi)
(11)

is the posterior probability that βi = 0 and

G(βi) =
N(zi|βi, 1)γ(βi)∫
N(zi|βi, 1)γ(βi)dβi

(12)

is the posterior density of βi when βi 6= 0. Note that the posterior pi is exactly the “local fdr”

defined in Efron (2007). Our classification rule in section 2.2 will be constructed based on

pi, and both parametric and nonparametric estimation methods will be applied to estimate

G in (10)-(12).

2.2 Bayes Classification Procedure

The above expressions yield the Bayes rule under the mixture loss function (2) with respect

to the mixture prior p(βi|w, γ). Note that the Bayes rule is to minimize E
[
L(a,β)|Z

]
where
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the expectation is for the posterior distribution of β given Z. Here is the formal statement.

Theorem 1. Denoting the ith component of the Bayes rule by aBayesi and the second moment

of βi under G(βi) in (12) by EG(β2
i ), the rule is aBayesi = 1 if pi <

cEG(β
2
i )

1+cEG(β
2
i )

and equals zero

otherwise, where pi and G(βi) are given in (11) and (12) respectively.

Proof of Theorem 1: Note that the conditional expectation of the mixture loss (2) can

be minimized component-wise. For the ith component of the decision vector, if ai = 1, then

E[L(1, βi)|zi] =

∫
L(1, βi)p(βi|zi)dβi = pi, (13)

and if ai = 0, then

E[L(0, βi)|zi] =

∫
L(0, βi)p(βi|zi)dβi = c(1− pi)EG(β2

i ). (14)

The Bayes rule is aBayesi = 1 when E[L(1, βi)|zi] ≤ E[L(0, βi)|zi]. This is exactly the condi-

tion given in Theorem 1. The proof is now complete.

To better understand the effect of the tuning parameter (cost constant) c, we consider

some extreme cases. When c→∞, we want to minimize the number of false non discoveries

without consideration of false discoveries. To achieve this, we claim all βi as signals. This

is consistent with our Bayes rule where the threshold goes to 1 and each βi will be detected

as nonzero element. When c→ 0, we just want to minimize the number of false discoveries,

so we claim all βi as noise. On the other hand, our Bayes rule does not detect any signals

as the threshold goes to 0.

Recall that in Scott & Berger (2006), they considered the absolute value |βi| in the loss

function (2) instead of our β2
i . Therefore, their Bayes rule involves EG(|βi|) instead of our

EG(β2
i ). There is no closed form expression for EG(|βi|) and this term has to be evaluated

numerically through some integration involving the marginal densities g(zi). Compared with

Scott & Berger (2006), the following Theorem 2 further shows that the threshold in our Bayes

rule can be conveniently and explicitly expressed in terms of the marginal densities g(zi).

Theorem 2. Under mild conditions in Brown (1971), the EG(β2
i ) in the Bayes rule thresh-
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olding condition can be written as

EG(β2
i ) = z2i + 1 +

g′′(zi)

g(zi)
+ 2zi

g′(zi)

g(zi)
. (15)

The Bayes classification rule will be defined correspondingly.

Proof of Theorem 2: Background for the following can be found in Brown (1986). To

show (15), we note that the derivative in

∂2

∂z2i
g(zi) =

∂2

∂z2i

∫
N(βi|zi, 1)γ(βi)dβi

can be taken inside the integral because the density N(βi|zi, 1) comes from an exponential

family. Then

∂2

∂z2i
g(zi) =

∫
∂2

∂z2i
[

1√
2π
e−

(βi−zi)
2

2 ]γ(βi)dβi

=

∫
∂

∂zi
(βi − zi)[

1√
2π
e−

(βi−zi)
2

2 ]γ(βi)dβi

=

∫
∂

∂zi
(βi)[

1√
2π
e−

(βi−zi)
2

2 ]γ(βi)dβi

−
∫

∂

∂zi
[(zi)[

1√
2π
e−

(βi−zi)
2

2 ]]γ(βi)dβi.

Iterating the integration above to compute the derivative in the first term and using the

product rule for the derivative in the second term, we see that the expression above is

=

∫
(βi)(βi − zi)[

1√
2π
e−

(βi−zi)
2

2 ]γ(βi)dβi

−
(∫

[
1√
2π
e−

(βi−zi)
2

2 ]γ(βi)dβi +

∫
zi(βi − zi)[

1√
2π
e−

(βi−zi)
2

2 ]γ(βi)dβi.

)

Collecting terms,

∂2

∂z2i
g(zi) =

∫
β2
iN(βi|zi, 1)γ(βi)dβi − zi

∫
βiN(βi|zi, 1)γ(βi)dβi

− g(zi)− zi
∫
βiN(βi|zi, 1)γ(βi)dβi + z2i g(zi).
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Dividing both sides by g(zi),

g′′(zi)

g(zi)
=

∫
β2
iN(βi|zi, 1)γ(βi)dβi

g(zi)
− 2zi

∫
βiN(βi|zi, 1)γ(βi)dβi

g(zi)
− 1 + z2i .

Note that ∫
βiN(βi|zi, 1)γ(βi)dβi

g(zi)
= zi +

g′(zi)

g(zi)

as in Brown (1971) and Robbins (1956).

Plug in and rearrange terms to get∫
β2
iN(βi|zi, 1)γ(βi)dβi

g(zi)
=
g′′(zi)

g(zi)
+ z2i + 2zi

g′(zi)

g(zi)
+ 1.

The proof is now complete.

The Bayes classification procedure defined in Theorem 1 is based on the hyper parameter

w and the nonzero prior γ. The following sections discuss estimation of w and γ in various

data settings.

2.3 Parametric Prior for γ

Practical Bayesian modeling often assumes some certain parametric density functions for γ.

Popular choices are as follows:

1 A normal prior N(θ, τ 2)

γ(βi) = N(βi|θ, τ 2) = (2πτ 2)−1/2 exp{−(βi − θ)2

2τ 2
}.

2 A double exponential (Laplace) with scale parameter a

γ(βi) = 0.5a exp{−a|βi|}.
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The Laplace prior has heavier tails than the normal prior. Details are referred to Johnstone

& Silverman (2004). Laplace prior with shifted location is also a possible choice, which can

also be implemented by the following procedure. To simplify the discussion, we only consider

the Laplace prior in Johnstone & Silverman (2004). In both cases, the marginal density of

zi conditional on the hyper parameters can be given analytically. For the normal prior, since

Zi|βi ∼ N(βi, 1) and βi|θ, τ 2 ∼ N(θ, τ 2), we have Zi|θ, τ 2 ∼ N(θ, 1 + τ 2). For the double

exponential prior,

g(zi|a) =

∫
N(zi|βi, 1)γ(βi|a)dβi

= 0.5a exp(
a2

2
)
[

exp(−azi)Φ(zi − a) + exp(azi)Φ(−zi − a)
]
.

Suppose the marginal of the data given the hyper parameters is g(zi|b), where for the normal

prior b = (θ, τ 2) and for the double exponential prior b = a. Then the log-marginal likelihood

is

logm(z|w, b) =

p∑
i=1

log
[
wN(zi|0, 1) + (1− w)g(zi|b)

]
. (16)

We can find suitable estimates of w and b by maximizing the log-marginal likelihood

(ŵ, b̂) = argmaxw,b logm(z|w, b).

Feasible computation proceeds in stages: for a fixed w, we find the b which maximizes

logm(z|w, b); then given the best a, we maximize with respect to w. We repeat this process

until convergence. The Bayes classification procedure in Theorem 1 is given by substituting

these final estimates of the hyper parameters into the expressions in Theorem 1 and Section

2.1.

2.4 Nonparametric Estimation of the Marginal

If we misspecified a density function for the true prior γ, then the Bayes classification proce-

dure in Theorem 1 usually does not perform well in practice. This will be illustrated in the
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simulation studies. To eliminate the misspecification effect from the parametric prior, we will

consider a nonparametric approach which adapts well to the data. Note that in the Bayesian

classification procedure, the prior γ plays a role only through the marginal g(zi). Instead of

assuming any prior for γ, we will estimate the marginal directly by a nonparametric method.

If pi were known we would proceed as follows. We first introduce independent Bernoulli

random variables {∆i}pi=1 where ∆i = 1 if βi = 0 and ∆i = 0 if βi 6= 0. Our nonparametric

Bayes estimate of g(z) is given as

ĝ(z) =
1

Nh

p∑
j=1

(1−∆j)K(
z − zj
h

) (17)

where K is a prespecified kernel function which satisfies
∫
K(x)dx = 1, h is the bandwidth of

the kernel and N is the total number of non zero βis. In our procedure, we will use a standard

normal density for the kernel function and consider h = O(p−1/5) for the bandwidth. More

details about kernel density estimation are referred to Wand & Jones (1995).

Since {∆i}pi=1 are unknown, we will apply EM algorithm (Dempster, Laird & Rubin 1977)

to iteratively estimate w and ∆is. Consider the complete log-marginal likelihood if we know

the missing data ∆ = (∆1, · · · ,∆p), then we have

logm(z,∆|w, g) =

p∑
i=1

log
[
∆iwN(zi|0, 1) + (1−∆i)(1− w)g(zi)

]
. (18)

Our EM algorithm consists of the following two major steps:

Step 1 Given initial values for w and g, calculate the conditional expectation of the log-

marginal (18) with respect to the posterior distribution of ∆ given z, w and g. The

result is given as follows:

E[logm(z,∆|w, g)] =

p∑
i=1

[pi logwN(zi|0, 1) + (1− pi) log(1− w)g(zi)] (19)

where pi is defined in (11). Find w which maximizes (19) by taking the partial deriva-
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tive of (19) with respect to w and setting it equal to zero. It is easy to obtain the

estimate of this hyper parameter as

ŵ =

∑p
i=1 pi
p

. (20)

Step 2 Correspondingly the nonparametric estimate of g in (17) will be updated as

ĝ(zi) =
1

p̃h

p∑
j=1

(1− p̂j)K(
zi − zj
h

) (21)

where p̃ =
∑p

j=1(1− p̂j).

Final Step In (20) and (21), pi will be given from (11) based on the estimate of w and g(z) from

the last iteration. We will repeat Step 1 and Step 2 until convergence. Suppose the

final estimates of pi is given as p̂i, then in the Bayes classification procedure from

Theorem 1, g′(zi) and g′′(zi) are estimated as

ĝ′(zi) =
1

p̃h2

p∑
j=1

(1− p̂j)(−
zi − zj
h

)K(
zi − zj
h

),

ĝ′′(zi) =
1

p̃h3

p∑
j=1

(1− p̂j)((
zi − zj
h

)2 − 1)K(
zi − zj
h

).

Nonparametric density estimation through kernel functions has a long history in statistics,

and the density derivative estimation has also been theoretically studied. Consider a kernel

estimator

f̂(x) =
1

nh

n∑
i=1

K(
xi − x
h

).

Hansen (2009) has shown the bias and the variance of the derivative of f̂(x). Let r be either

1 or 2, then the bias is

Bias
(
f̂ (r)(x)

)
=

1

2
f (r+2)(x)h2κ2(K) + o(h2),

where κ2(K) =
∫∞
−∞ u

2K(u)du is the second moment of the kernel, and f (r) is the rth
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derivative of a function f . The variance is

V ar
(
f̂ (r)(x)

)
=

f(x)

nh1+2r

∫ ∞
−∞

K(r)(u)2du+O
( 1

n

)
.

Our proposed Bayesian classifier may be influenced by the accuracy of the density derivative

estimation. More theoretical properties is beyond the scope of the current paper, and the

performance of our classifier will be evaluated through simulation studies.

3 Simulation Studies

For each simulation run, we generate 100 samples of 500 observations each from a model of the

form in equation (1) and come up with decision vectors a using different classification rules.

We then compare the performance of the two proposed classification methods in terms of the

average of the loss in expression (2). To test the classification rules under various conditions,

each simulated set of 100 samples comes from a model with varying sparsity, and generating

distribution for the non-zero βi’s.

Figure 1 shows some representative plots which compare the average total loss for our

nonparametric classifier and the normal prior competitor under different sparsity and signal

distribution conditions when the signal is relatively strong. For this figure, the non-zero βi’s

are generated from a mixture of N(5, 1) and N(−5, 1) distributions, from a unit mass at the

value 5, or from a mixture of a unit mass at the value 5 and the value -5. The proportion

1−ω of non-zero βis is set to 0.05, 0.1, and 0.3. The classifiers are compared at various values

of the cost constant c, which corresponds to the relative cost placed on false negative results

when a signal is mistakenly classified as noise. Our nonparametric classifier outperforms

the parametric competitor (i.e., has lower average loss) for broad ranges of c values in each

case. Similar simulation setups with weaker signal and higher signal sparsities were also

tried. For weaker signal, the performance of the parametric and nonparametric classifiers

were typically closer.
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(a) w = 0.7, βi = 5
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(b) w = 0.7, βi = 5 or −5
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(c) w = 0.7, βi is from N(5, 1) or
N(−5, 1)
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(d) w = 0.9, βi = 5

1111111111
1

1

1

1
1

0 1 2 3 4 5

0
20

40
60

80
10

0
12

0

2
2

2
2222222

2

2

2

2

2

0 1 2 3 4 5

0
20

40
60

80
10

0
12

0

3
3

3
3333333

3

3

3

3

3

0 1 2 3 4 5

0
20

40
60

80
10

0
12

0

4444444444 4
4

4 4 4

0 1 2 3 4 5

0
20

40
60

80
10

0
12

0

c

E
m

pi
ric

al
 L

os
s 

(A
ve

ra
ge

 o
ve

r 
10

0 
R

un
s)

(e) w = 0.9, βi = 5 or −5
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(f) w = 0.9, βi is from N(5, 1) or
N(−5, 1)
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(g) w = 0.95, βi = 5
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(h) w = 0.95, βi = 5 or −5
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(i) w = 0.95, βi is from N(5, 1) or
N(−5, 1)

Figure 1: Average empirical total loss over 100 samples of 500 observations. Line 1: non-
parametric Bayes classifier; Line 2: parametric classifier with prior mean=0 and variance=1;
Line 3: parametric classifier with estimated prior mean and variance; Line 4: classifier using
true prior function. The samples are drawn from a model of the form in equation (1) with
varying signal sparsity (w) and varying underlying distributions of non-zero βi’s. The two
classification rules are compared at different values of the cost constant c.
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4 Real Data Analysis

In this section, the nonparametric prior Bayesian classifier is compared with two parametric

competitors using a publicly available gene expression data set described in Efron (2009).

This microarray data set consists of gene expression measurements for 6,033 genes from 102

people, 52 of whom have been diagnosed with prostate cancer. The goal is to identify genes

which are linked to the disease. Following Efron (2009), prior to applying the classification

procedures, the 6,033 by 102 raw data matrix is reduced to 6,033 summary statistics. For

each of the 6,033 genes, a two-sample t test statistic is constructed using observations on

the two groups of study participants. They have the form

ti = c0
x̄1i − x̄2i

σi
, (22)

where c0 =
√
n1n2/n, n1 = 50, n2 = 52, x1i and x2i are the average expression levels for

gene i among the people in the two groups, and σi is the pooled standard deviation of the

expression levels of gene i. The t-scores are transformed into standard normal quantiles zi

using the transformation

zi = Φ−1(Fn−2(ti)), (23)

where Fn−2 is the cumulative distribution function of the t distribution with n − 2 degrees

of freedom, and Φ is the standard normal cumuluative distribution function. A histogram

of the data is presented in Figure 2.

The nonparametric prior procedure and two parametric classification procedures were

applied to the zi values to classify the 6,033 genes into two classes: “not associated” and

“associated” with disease. Using each procedure, three sets of estimates for the probability

that each gene is not associated with the disease were obtained. These are presented in

Figure 3. The decision rule for each procedure is obtained by comparing these probability

estimates to estimates of the threshold from Theorem 1 & 2. Genes for which the probability

estimates fall below the threshold are classified as associated with the disease, and the other

genes are classified as not associated. The probability estimates from the nonparametric
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approach are represented by the top, dark green curve. The thin bottom curves correspond

to the estimates from the parametric approaches. Note that the results from the parametric

procedures are almost identical. This is not surprising since the only difference between

the two procedures is that the mean of the normal prior is set to zero for one of them

and estimated from the data for the other, and the data is roughly centered around zero.

The nonparametric approach gives much higher estimates of the probabilities that the genes

with expression levels close to zero are not associated with the disease. These higher values

seem reasonable since one probably does not expect to find many genes associated with

disease for which the level of differential expression is very low. The classification results

for the nonparametric procedure can also be quite different from those from the parametric

approaches. For example, when the cost constant c = 5, while 1095 genes are classified

as associated with disease using the nonparametric procedure, the parametric procedure

with prior mean set equal to zero classifies 983 genes as associated with disease; the other

parametric procedure gives almost identical results and classifies 984 genes in this way. At

the same time, while the absolute numbers of genes differ greatly, the decision rule cut-offs

are not far apart. With the nonparametric approach, genes with zi values below -1.470

and above 1.449 are classified as signal. For the parametric approach with prior mean set

equal to zero, the cut-offs are -1.53 and 1.53. For the other parametric approach, the cut-

offs are -1.520 and 1.546. This shows that even small shifts in the estimated cut-off points

can produce large changes in the number of genes classified as signal when there are many

observations with close values.

5 Conclusion

In this paper, we propose two types of Bayesian classifiers in the context of a highly in-

terpretable loss function. While the parametric Bayes classifier is conceptually simpler, the

nonparametric rule outperforms it in terms of the risk function. In particular, when the

prior distribution is misspecified for the parametric classifier, the nonparametric technique

dominates over the range of c values. This is reassuring because the particular choice of c
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Figure 2: Histogram of 6,033 summary statistics zi based on the 6,033 by 102 matrix of gene
expression data
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Figure 3: Estimates of probability pi that the ith gene is not associated with disease. Top
curve: nonparametric approach. Overlapping bottom curves: parametric approaches.
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is a measure of the relative cost of false negatives to a researcher and, in practice, may be

difficult to specify precisely for some classification problems.

We illustrate the performance of the two procedures using a publicly available gene

expression data set. It is seen that, while the decisions produced by the two rules can be

similar, they can also vary greatly for reasonable values of the cost constant c. For the gene

expression application in this paper, we focus on a single time point from a multi-timepoint

microarray experiment and treat the observations as if they were independent. In future

work, we hope to extend the nonparametric classification procedure to capture time and

observation dependence structure.
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